

Adhsion and Interfacial Failure in Drug Eluting Stents

Background and Introduction

- Cardiovascular disease is the leading cause of death across the world
- It represents about 30% of all deaths
- Stents represent a life saving technology for arterioschlorosis
- Drug Eluting Stents (DES) reduce the possibility of clotting after stent insertion

Drug-Eluting Stents

Princeton University

Marrey RV et al. (2006) *Biomaterials* 27:1988–2000

AFM Adhesion Pull-Off Force Measurement

Princeton University

-2.00

-1.00

2.00 µm

٠

AFM Adhesion Pull-Off Force Measurement

Princeton University

AFM Adhesion Pull-Off Force Measurement

Princeton University

Experiments: AFM

Adhesion Theory

Johnson KL, Kendall K, Roberts AD (1971) *Proc. R. Soc. London, Ser.A*, 324,

Derjaguin BV, Muller VM, Toporov YP (1975) *J. Colloid Interface Sci.*, 53, 314.

Adhesion Theory

Johnson-Kendall-Roberts (JKR)

model: describes well the contact area when the surface forces are short range in comparison to the elastic deformations they produce (i.e., compliant materials, strong adhesion forces, large tip radii)

Derjaguin–Muller–Toporov (DMT):

applies well in the case of longrange surface forces with an hertzian geometry (i.e., stiff materials, weak adhesion forces, small tip radii)

General case

Princeton University

$$F_{JKR} = \frac{3}{2}\pi \gamma R$$

$$F_{DMT} = 2\pi \gamma R$$

$$F_{ad} = \overline{F}\pi\gamma R$$

Carpick RW, Ogletree DF, and Salmeron M (1999) J. Colloid Interface Sci., 211, 395.

$$\sigma_0$$
 σ_0 σ_0

$$\lambda = 2\sigma_0 \left(\frac{R}{\pi K^2 \gamma}\right)^{1/3}$$

 $\lambda = f(\alpha) = -0.913\ln(1 - 1.018\alpha)$

 $\overline{F} = 0.267 \alpha^2 - 0.767 \alpha + 2.000$

$$\gamma = \sigma_0 h_0$$

Typical Force-Displacement Curve

Modeling AFM Adhesion

Fracture Mechanics

Experiments: Brazil nuts

P P P Parylene 2a Slot Parylene 2a B

> Wang and Suo, *Acta Metall. Mater*, 38 (7): 1279-1290;

Atkinson et al., *Int J Fract Mech* 18 (4): 279-291.

Typical Fracture Surfaces: Parylene/Steel Sample #8

Princeton University

2mm

Comparison of DMT models and Interfacial Fracture Experiments

$$F_{DMT} = 2\pi \gamma R$$

 $\overline{G} = \overline{G}_0(1 + \tan \Psi^2)$

Atkinson Model

• Atkinson et al. (1982)

$$N_{I} = (K_{I})/\sigma_{0}\sqrt{\pi a}, \ N_{II} = (K_{II})/\sigma_{0}\sqrt{\pi a}$$
$$\sigma_{0} = P/\pi l.$$
$$N_{I} = \sum_{i=1}^{n} T_{i}(\frac{a}{l})^{2i-2}A_{i}(\theta), \ N_{II} = 2\sin 2\theta \sum_{i=1}^{n} S_{i}(\frac{a}{l})^{2i-2}B_{i}(\theta)$$

 A_i and B_i are coefficients related to θ

$$\hat{\psi} = \tan^{-1} \frac{K_{II}}{K_I} + \omega + \epsilon \ln(\frac{\hat{L}}{h})$$

$$G = G_I + G_{II} = \frac{K_I^2 + K_{II}^2}{E_1} = (N_I^2 + N_{II}^2) \frac{P^2}{E_1 a}$$

Fundamental Mechanism of Interfacial Fracture

• Evans and Hutchinson (1982) presented the row model

 $\frac{\Delta G}{C} \equiv \Sigma(\phi, \beta, \psi, \epsilon)$ $[(\sin\beta + \cos\beta \tan\psi)(\sin(\beta - \phi))]$ $= + 2h \frac{+\cos(\beta - \phi)\tan\psi]}{\cos\varphi(1 + \tan^2\psi)}$ $h^2(\sin\beta + \cos\beta \tan\psi)^2$ $\cos^2 \phi (1 + \tan^2 \psi)$ $\phi + \psi < \pi/2, \quad \langle \Delta G \rangle / G = \frac{1}{\pi} \int_{\pi - \psi}^{\pi} \Sigma \, \mathrm{d}\beta$ $\phi + \psi > \pi/2$ $\langle \Delta G \rangle / G = \frac{1}{\pi} \int_{-\infty}^{3\pi/2 - \varphi - \psi} \Sigma \, \mathrm{d}\beta$ $+\left(\frac{\phi+\psi}{\pi}-\frac{1}{2}\right)(1-\Omega).$

a) Basic Configuration

b) Frictional Force

Fundamental Mechanism of Interfacial Fracture

• A zone model was proposed for improvement

$$\alpha = \frac{(L/l)}{\ln[1/\sin(\pi D/2l)]}$$

$$\alpha_0 = \frac{\pi (EH^2/lG_0)}{32(1-\nu^2)\ln[1/\sin(\pi D/2l)]}.$$

$$\Delta G/G = \frac{\tan^2 \psi \{1 - k [\alpha_0 (1 + \tan^2 \psi) (\Delta G/G + 1)]\}}{1 + \tan^2 \psi}$$

$$G_{\rm i}=G_0(1+\tan^2\psi).$$

Crack Surface Profile Measurement

Material and Geometrical Parameters

Comparison of Model Predictions

Comparison of Model Predictions

Comparison of Model Predictions

Summary and Concluding Remarks

- This class presents some examples of the applications of adhesion and fracture mechanics concepts to drug eluting stents
- Pull-off forces determined from AFM experiments on bi-material pairs (useful for ranking interfaces)
- Brazil disk specimens used to measure mode mixity dependence of interfacial fracture toughness
- Link established between molecular AFM measurements of pull-off force and surface energy
- The surface energy estimates are in good agreement with results from Brazil disk tests
- Trends of mode mixity fracture toughness from row/zone models in agreement with experiments

Acknowledgments

- Cordis Company
 George Papendreou
 Cynthia Maryanoff
 Kurt Wolf
- □ Ting Tan
- □ Nima Rahbar
- □ Juan Meng
- □ Wanliang Shan

Overview of Course

- Introduction to fatigue crack initiation and propagation
- Empirical fatigue models
- Fundamentals of fracture mechanics
- Toughening mechanisms
- Fundamentals of fracture brittle/ductile and mechanisms in different classes of materials
- Frontiers of fracture mechanics dental multilayers and biomedical stents

